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A turbulent mixing layer constrained 
by a solid surface. Part 2. Measurements in the 

wall-bounded flow 

By D. H. WOODt AND P. BRADSHAW 
Department of Aeronautics, Imperial College, London 

(Received 15 May 1983) 

The single- and two-point measurements made in a high-Reynolds-number single- 
stream mixing layer growing to  encounter a wind-tunnel floor on its high-velocity side 
that were described by Wood & Bradshaw (1982) have been extended to the 
wall-bounded flow. It is shown that the expected large amplification of the normal- 
stress components in the plane of the wall does not occur until after the mixing layer 
reaches the surface. There is some evidence that the double-roller component of the 
large-eddy structure of the original free shear layer is being re-established in the 
wall-bounded flow after having been stretched and weakened by the initial effect of 
the wall. The triple-product terms appearing in the turbulent-energy and shear-stress 
equations are altered in a way that cannot be reproduced by models used in current 
calculation methods. It appears that all the pressure-fluctuation terms in the 
individual normal-stress and shear-stress transport equations respond in a non- 
monotonic manner to the imposition of the wall. The implications for calculation 
methods suitable for predicting the change from an initially unaffected free shear 
layer to a wall-bounded flow are discussed. 

1. Introduction 
This paper is one of a series on ‘complex’ turbulent flows, defined as shear layers 

with complicating influences like distortion by extra rates of strain or interaction with 
another turbulent field. General reviews of complex flows are given by Bradshaw 
(1975, 1976). Specifically this paper is a sequel to Wood & Bradshaw (1982; herein- 
after cited as I) ,  who made extensive measurements in the initially ‘unbounded’ 
single-stream mixing layer shown in figure 1 as it became increasingly influenced by 
the wind-tunnel floor. The measurements in I were limited to the regions before the 
mixing layer proper had reached the flow ; here we present measurements from the 
wall-bounded ‘mixing layer’.$ For brevity we will assume that the reader has access 
to I, where the sparse literature on wall effect is reviewed, and the unbounded 
large-eddy structure (Grant 1958; also Savill in Kline, Cantwell & Lilley 1982, pp. 
999-1004) is shown to be essentially three-dimensional. The conjectured structure is 
a combination of Grant’s ‘double-roller eddy’ and an ‘outer motion’ that closes the 
vortex loop near the potential core, giving the appearance of a horseshoe vortex. As 

Present address: Department of Mechanical Engineering, University of Newcastle, N.S.W. 
2308, Australia. 
1 In  the absence of a suitable alternative we will continue to describe the flow as a mixing layer 

in the wall-bounded region. The unbounded flow with negligible wall effect will be referred to as 
the self-preserving flow. 
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FIGURE 1. Schematic diagram of test rig. All dimensions in cm 

the influence of the wall became important, all the spanwise and streamwise 
correlation scales increased, and i t  was argued that this stretched and weakened the 
double-roller component. The most surprising result was that 3 was amplified 
significantly across the whole layer, in contrast with the intuitive and theoretical 
expectation (Hunt & Graham 1978; Wood & Ferziger 1983) that  the wall should 
amplify 2 and w" a t  the expense of 3. It was suggested that the rise in i2 was 
associated with an alteration to  the fluctuating pressure field caused by the wall; the 
mean-velocity profile did not alter until the flow reached the floor. 

A major motivation for the present work arose from the widely held view that any 
generally applicable turbulence model should simulate the structural differences 
between an unbounded shear layer and one constrained by a wall. For a thin shear 
layer, the most important differences occur in the UV transport equation, specifically 
in the turbulent-transport term a, which can be measured, and in the pressure-strain 
'redistribution' term, which cannot. By analogy with the Poisson equation for the 
instantaneous pressure, it is now generally accept'ed that the latter should be 
modelled in two parts, one depending on the mean strain rate and the other depending 
only on the turbulence. Unfortunately the pressure term itself can only be deduced 
by difference after measuring all the other terms in the equation for UV, and the two 
parts cannot, in general, be separated. The first effect of a solid surface on the 
fluctuating pressure field is to  add a wall-reflection term, best thought of as an integral 
of the Poisson equation over the instantaneous image flow beneath the surface. The 
integral has a part depending on the mean strain rate of the image flow, but i t  clearly 
cannot be even approximately related to the mean strain rate at the point in the real 
flow where the pressure-strain term is required. The explicit wall-affected terms in 
some empirical turbulence models are generally functions of the ratio of the 
turbulence lengthscale, say (p)f/e,  where e is the dissipation, to distance from the 
wall (e.g. Launder, Reece & Rodi 1975; Gibson & Launder 1978) and so are much 
too crude to  be interpreted as image 'integrals'. 

The present experimental techniques are the same as those described in I and more 
fully documented in Wood (1980). Since the hot-wire probes had to be moved 
upstream into the potential core for calibration and i t  was not possible to infer 
uv-profiles from the measured mean-velocity distributions with the same accuracy 
as in I (see 32.1) to check the accuracy of the hot-wire measurements, the uncertainty 
in the present measurements, about 15 yo and 30 yo for the second- and third-order 
results respectively, is higher than for those in I. A comparison of measured and 
calculated UV in I suggests that  the former are underestimated by about 10 Yo. 

- 
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FIGURE 2. Mean-velocity profiles. z-z0 (cm): 0, 104.7; 0, 129; A, 155.6. Solid line is best fit to 
self-preserving profile. The position of the wall is indicated. 

The results are presented in the same order as in I .  I n  the absence of a suitable 
alternative we persist with mixing-layer similarity scaling for the results, t,hat is U, 
(=  16.4k0.1 m s-l) is the velocity scale and x-xo  is the lengthscale, where 
xo = -6.8 cm is the position of the effective origin. The scaled position of the 
wall, denoted by qw, where = y / (x -x , ) ,  is -0.126, -0.100 and -0.0834 a t  
x -xo  = 100.38, 125.9 and 151.1 ern respectively. Only the last two stations are in 
the wall-bounded flow. The 100 cm results are included to indicate typical values in 
the unbounded mixing layer. Any substantial changes that occurred before 100 cm 
will also be noted. The mean velocity and single-point turbulence measurements are 
given in $2, and the correlation results in $3. A general discussion follows in which 
the implications for calculation methods are considered. 

2. Single-point results 
The mean-velocity profiles are shown in figure 2 together with the fully developed 

distribution from I .  The points closest to the wall, when fitted to the law of the wall, 
indicate that the skin-friction coefficient cf = 7w/$U21 was 0.0039 a t  both 126 and 
152 cm. Away from the wall, the mean velocity hardly deviates from the unbounded 
distribution. The maximum value of the intermittency factor y in figure 3 continues 
the decrease with increasing x that was noted in I. Near the wall y rises again and 
should reach unity deep within the wall 'boundary layer'. The local minimum in y ,  
perhaps the best definition for the boundary-layer edge, occurs a t  q = 0.057 and so 
is reasonably close to the position of maximum velocity, given in table 1. 

The mean-square intensities are shown in figure 4 - note that the vertical scale for 
2 is twice that f o r 3  a n d g .  I n  a zero-pressure-gradient boundary layer the maximum 
levels of u2, v 2  and 3 are roughly 2.5, 0.5 and 1 times u," respectively. These levels 
are shown in figure 4 to demonstrate that the enormous rise in 2 and the lesser rise 
in 3 are caused by the effect of the wall on the mixing-layer turbulence. I n  contrast, 

_ _  
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FIGURE 3. Intermittency factor at x-z0 = 151.5 cm. Solid line 
shows the distribution at 75.06 cm. 

x-xo (cm) 
Quantity 

129.87 151.51 
G / q  -0.091 -0.069 
ElaY -0.078 -0.062 
43 -0.080, -0.005 -0.061, -0.010 
aqz/ay -0.080, -0.015 -0.061, $0.014 

TABLE 1. Position of zeros on high-velocity side 

- 
v 2  hardly alters from its distribution at  100 cm probably because the expected 
decrease due to the wall acting on the mixing-layer turbulence is offset by the rise 
in v 2  that normally occurs in a boundary layer as the wall is appr0ached.t 

Spectra of the u- and v-components are shown in figure 5 using the same scaling 
as in I, that is 

where 

- 

Ul $ i i ( W )  
> x-xo $&J) = 

JOW $&J) do  = 1,  

is plotted against the dimensionless radian frequency 

of E o(x-.,)/U, 

for i = 1 , Z .  As the wall is approached, $11 develops a peak at  o x 10 Hz, or o’ x 5.8, 
the same frequency as the peak in all the $22. Recall from I that the rise in 3 after 
x-xo = 62 ern was associated with the development of a strong peak in $22 at about 
8.5 Hz (or o’ x 2.4 a t  75 em); at the same time q511 developed a slight peak at the 
same frequency.$ 

t Note that 7 in the unbounded flow increased from the self-preserving distribution shown in 
figure 4. 

$ A mistake was made in the computer plotting of $,, and $22 from which figures 5 and 6 of 
I were drawn. All the plotted points should be shifted to the left by the amount log,, [(i-t)/( i+ l)], 
where i is the number of the point counting from the left. The mistake is significant only for the 
first eight points and the only subsequent error of any importance is in the peak value for o’, given 
as 3.6 in I ;  the correct value is 2.4. The spectra in figure 5 of this paper are plotted correctly. 
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FIGURE 4. Normal stress profiles. z-zo (cm): 0, 100.4; 0, 125.9; A, 151.5. The position of the 
wall is indicated. Horizontal arrows show boundary-layer normal-stress levels as explained in text. 
Solid line is self-preserving 3. (a )  2 1  ; ( 6 )  21 0: and 21 U:. 

Since the difference between the peak frequencies at 75 and 152 em is less than the 
frequency windows used to generate the spectra, it is possible that the peaks occur 
a t  the same frequency and so are associated with some form of upstream influence 
which would not scale on x--2,. This possibility was discounted in I largely on the 
ground that the thin-shear-layer form of the turbulent-energy equation, which 
precludes upstream influence, provided a plausible explanation for the rise in q522. We 
defer further discussion of the spectral peaks until the turbulent-energy balance is 
presented in $4. 

The spectra measured closest to the wall appear to contain widely separated 
contributions from tjhe mixing-layer and boundary-layer turbulence. In  normal 
boundary layers there is a broad peak in a t  around w x U,S$. Assuming that the 
boundary-layer thickness a,,, is the distance from the wall a t  which y is a minimum 
giveslog,, ( Ul&:) z 1.8. As w’ increases, the boundary-layer contributionincreasingly 
dominates the rapidly diminishing mixing-layer component to the extent that an 
inertial subrange appears for the former. As a rough estimate of the contribution of 
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FIGURE 5. q511 and q522 at 151.5 cm: X ,  7 = -0.0757; 0, -0.052; 0, +0.014. Solid 
line shows inertial-subrange equation at 7 = +0.014. (a )  &; (b)  

the boundary-layer turbulence to the normalized spectra, log,, a t  log,, w' = 1.8 
is -3.0, -2.6 and -2.8 for i = 1, 2 and 3 respectively ($33 was measured at  
rj = -0.0774). Since the values are in inverse proportion to the degree of amplifi- 
cation by the wall, they are consistent with our earlier conclusion that the 
amplification of 2 and 3 was caused by the effect of the wall on mixing-layer 
turbulence, rather than by shear production in the boundary layer. 
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FIQURE 6. Shear-stress profiles. Symbols as in figure 4. Horizontal arrows show the wall shear stress 
at 125.9 and 151.5 cm inferred from the logarithmic law. 

The measured shear-stress distributions are plotted in figure 6. Accurate profiles 
could not be obtained from the measured mean velocity using the momentum 
equation because of the difficulty in evaluating the normal-stress term a(u2 - v2)/ax. 
I n  the wall-bounded flow, this term was estimated as the difference between u2-u2 
a t  the station where UV was required and that a t  the previous station. The calculations 
were started a t  100 cm. The resulting maximum value of UV/Ut was 1.73 x lop2 a t  
152 em, while ignoring the normal-stress term altogether gave a maximum value of 
1.47 x lop2 at  152 cm. It will be shown in $4 that the streamwise component of the 
advection of turbulent energy, found in a similar manner to a(u2-v2)/i3x is 
overestimated a t  152 em, especially near the wall, where both terms are dominated 
by 2. Thus a@- v2) /as ,  and hence ZiE, are also likely to be overestimated at 152 cm. 
In any case, the calculations and measurements show a general increase in the level 
of UV after the flow reached the floor. 

The cf  values inferred from the mean velocity near the wall appear to be consistent 
with the hot-wire results. The position where UV passes through zero is closer to the 
wall than the point where aU/ay = 0 a t  both 126 and 152 cm as in a fully developed 
wall jet. Near the wall, the relatively high-wavenumber boundary-layer turbulence 
must be responsible for the shear-stress-producing motion, but 2 and 2 a t  least, and 
hence the bulk of the turbulent energy, are produced by mixing-layer eddies a t  
relatively low wavenumber. In  a normal boundary layer the analogue of the latter 
is called ‘inactive motion’ (Townsend 1961 ; Bradshaw 1967); the present flow, 
particularly a t  152 cm, provides an extreme example of the disparity in scales induced 
by the wall that  characterizes inactive motion. 

It is shown in I that the flatness factors F, and F, on the high-velocity side decrease 
from approximately 3/y to 3 as x increases in the unbounded flow, with the most 
rapid decrease occurring in F,. It was shown that the decrease was caused by the 
increasing fluctuation levels in the diminishing potential core of figure 1, see equations 
(4) and ( 5 )  of I .  Figure 7 shows that F, hardly alters as the mixing layer _ -  reaches the 
floor, presumably because F, is no longer sensitive to the precise level of u&/u;, where 
T and N denote turbulent and non turbulent zone averages respectively. F, continues 
to  decrease, partly because the increase in in the unbounded flow was less than 
in uk flow, so that F, can decrease after 100 cm as $$ increases. 

_ _  
- _  

_ -  

- 

- 
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FIGURE 7 .  Flatness factor profiles. Symbols as in figure 4. Solid line 
i s  3 / y  at 151.5 cm. (a )  F,; ( b )  F,. 
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FIGURE 8. Turbulent-energy transport velocity. Symbols as in figure 4. 

As in I,  the triple products are presented in the abbreviated form of the transport 
velocities for turbulent energy and shear stress, after a brief description of the major 
changes in the individual triple products. The full results are given by Wood (1980). 
The decrease in magnitude of 2 on the high-velocity edge as x increases continues into 
the wall-bounded flow; 2 finally becomes negative for 7 s -0.06 at 152 cm. The 
increase in magnitude of 3 near the potential core had finished by 100 cm, with 3 
decreasing in magnitude after 100 cm, especially near the wall. Both 
decrease in magnitude near the wall, with 2 becoming negative in the region where 

and 
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FIGURE 9. Shear-stress transport velocity. Symbols as in figure 4. 

UV is also negative a t  152 cm. The resulting transport velocities were found using the 
same approximation that w21) x 0.2(&+2) as was used in I. They are 

and are shown in figures 8 and 9 respectively. It was found in I that, near the 
high-velocity edge, Vh decreased slightly in magnitude between 56 and 10 ern in the 
unbounded flow while V, was self-preserving a t  all stations except 100 em, where there 
was also a decrease in magnitude, which was probably caused by experimental error. 
Near the high-velocity edge, the magnitude of V& decreases significantly in the 
wall-bounded flow and becomes positive in the boundary-layer region. Since V& is 
roughly constant and positive in the outer region of a boundary layer, with a value 
depending on the growth rate of the boundary layer (which we did not measure) (see 
e.g. Smits, Young & Bradshaw 1979), the positive V& immediately adjacent to the 
wall is most likely due to the boundary-layer turbulence. I n  general, turbulent 
diffusion is affected by eddies of the same scale as the shear-layer thickness, so the 
large disparity in scale between the mixing-layer and the boundary-layer motion 
presumably also prevents any significant changes to the diffusion in the latter. 

3. Two-point measurements and autocorrelations 
Conditionally sampled two-point measurements, similar to those described in I, 

were also taken a t  152 em. However they appear to yield little information additional 
to that contained in the ‘total’ correlations, so only the latter are shown. The full 
measurements, taken with spanwise and normal separations, can be found in Wood 
(1980). At 152 cm the ‘aspect ratio’ of the shear layer, defined as the width of the 
wind tunnel, 76.2 cm, divided by the shear-layer thickness 6, was about 2.5, so that 
the probe separation r was limited to less than 6 to avoid sidewall effects. We did 
not attempt to discrimillate between boundary-layer and mixing-layer fluid, so that 
all the spanwise measurements were limited to the region where aU/ay < 0. Table 
2 contains a summary of the spanwise correlations, with those a t  37 and 75cm 
included for comparison. The table gives the value ofthe correlation a t  the normalized 
probe separation indicated. The notation for the correlations is explained in I :  for 
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0.05 

7 = -0.05 1 = -0.025 1 = +0.025 
r / (5 - - zo )  = r / ( z - z o )  = r / ( z - z o )  = 

0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 

R,,(O, 0 , r )  
0.08 0.08 -0.05 -0.04 0 -0.05 -0.02 0 
0.22 0.21 0.10 0.01 -0.02 0.10 -0.02 -0.02 
0.32 0.29 0.08 0.05 0.07 0.11 -0.03 -0.03 

R z z ( O , O ,  r )  
0.22 0.18 0.16 0.16 0.08 0.13 0.16 0.08 
0.42 0.32 0.38 0.29 0.23 0.36 0.29 0.23 
0.18 0.15 0.25 0.16 0.13 0.23 0.13 0.13 

Riz(O, 0, r )  

0.15 0.12 0.07 0.06 0.07 -0.04 -0.03 0.03 
- 0.27 0.22 0.20 0.22 0.11 0.08 
0.32 0.30 0.15 0 -0.04 0.15 0 -0.04 

- 

&,(O,O, r )  

-0.03 -0.05 0.15 -0.02 -0.05 - - - 
0.07 -0.02 0.25 0.10 -0.05 - - - 
0.02 -0.05 0.22 0.05 -0.05 0.22 0.05 -0.05 

TABLE 2. Values of spanwise correlations at separations indicated. 
Nominal z-z0 (cm): (a), 37; (b) 75; ( c ) ,  152. 

Rii(r’, 0 , O )  RZZV, 0,O) R33(r’, 0 , O )  

1 (a )  (b )  (4 (a )  (b )  (4 (a )  ( b )  (4 
- - - - 0.060 0.300 -0.15 -0.0774 - - 

-0.0757 0.135 0.275 -0.350 0.110 0.200 -0.06 - - - 

-0.052 0.140 0.270 -0.225 0.120 0.240 -0.13 0.150 0.300 -0.016 
t0.014 0.205 0.360 -0.105 0.130 0.230 -0.18 - - - 

0.120 0.220 -0.09 +0.018 - - - - - - 

TABLE 3. Properties of ‘streamwise’ correlations. Values are r ’ / ( z - z o ) ,  where r’ = Uct a t  
(a )  crossover point and ( b )  position of negative peak. ( c )  is vaEue of negative peak. 

example R,,(O, 0, r )  is the spanwise correlation of the u-component, and the same 
definition of correlation scale is used: that is the scale is either the position where 
the correlation (whose maximum value is 1) h& fallen to 0.05, or the crossover point 
before a negative region if any. The most noticeable feature of the results a t  152 cm 
is the large increase in scale of R,,(O, 0, r )  as the wall is approached, suggesting that 
the relatively low aspect ratio did not affect the eddy structure. At the same time, 
the scales of R,,(O, 0, r )  and R,,(O, 0, r )  do not alter significantly. At constant 11, only 
the scale of R,,(O, 0, r )  has decreased markedly from the value at 75 cm. R,,(O, 0, r )  
appears to be re-establishing the negative loop it had at  37 em but had lost by 75 em, 
and so is once again becoming similar in shape to R,,(O, 0, r ) .  

As in I, the autocorrelations were converted into pseudostreamwise correlations 
by using r’ = U,t, where U, is the convection velocity and t is the time delay. For 
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all three components U, was assumed to be the local mean velocity for 7 2 0, and 
U(7 = 0) = 0.6750; for 7 < 0, following the unbounded-mixing-layer measurements 
of Wills (1964). The results are given in table 3 in the same form as in table 1 of I. 
All the streamwise correlations have decreased by 152 cm; for example at 7 = - 0.050 
the crossover point in Rii(r', O , O ) ,  which is entry ( a )  in table 3, was 0.37, 0.30 and 
0.20 for i = 1 ,  2 and 3 respectively a t  75 em. As the wall is approached, only 
Rll(r', 0,O) decreases significantly in scale, suggesting that the stretching of the eddies 
in the plane of the wall occurs mostly in the spanwise direction. The relative increase 
in R,,(O,O,r) over R,,(O,O,r) as the wall is approached is probably related to  the 
relatively larger amplification of 2. 

4. General discussion 
The most interesting change in the turbulence structure as the mixing layer finally 
reaches the floor is the large rise in 3 and the huge rise in 2 adjacent to  the surface, 
while 3 hardly alters, presumably because the attenuation of the mixing-layer 
motion is balanced by the increase in the boundary-layer component. 

Since the overall level of UV has risen appreciably from the self-preserving level, 
while the mean velocity has hardly altered over most of the shear layer, the total 
production of turbulent energy (which is dominated by UV aUli3y) increases, and hence 
the level of a" must increase somewhere in the wall-bounded flow. Figure 10 shows 
the balance of turbulence energy (equation 1 0 ( d )  of I)  a t  152 em. The only significant 
x-dependent term, U a P / a x ,  which is the streamwise component of the advection, 
was approximated in the same way as the normal-stress term in the mean-momentum 
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equation, that is by using the difference between ? at 152 and 126 cm. The resulting 
U a @ / a x  dominates the advection close to the wall where V is very small. From the 
negative values of the dissipation found by difference, it is obvious that the 
magnitude of i3@/i3x has been grossly overestimated close to the wall, suggesting that 
the amplification of 2 and 3 is close to a maximum at 152 cm. A more plausible 
variation of the advection is shown in figure 10. In  contradistinction to the energy 
balance in the unbounded flow, the measured UV rather than the values calculated 
from the mean-momentum equation were used to obtain the production. From I, the 
measured UV in the unbounded flow is around 10 % too low, so that the magnitude 
of production in figure 10 is also likely to be low, as suggested by the disagreement - 
larger than found in I - between the dissipation found by difference and that obtained 
from the inertial subrange part of a t  7 = +0.014 (see figure 5a) .  If the magnitude 
of the production was increased by around 10 yo, the resulting discrepancy between 
the two estimates of the dissipation would be about the same at 152 cm as in I. The 
discrepancy at 75 cm is no larger than at  37 cm, where there were no sharp spectral 
peaks which could be associated with feedback. Since the spectral determination of 
E should be independent of the validity of the thin-shear-layer approximation to the 
turbulent-energy equation, it is unlikely that any significant feedback mechanism 
affected the results. 

As would be expected from the different positions of zero UV and all lay (table l ) ,  
the production of ?, which is mostly production of 2, is a loss close to the wall. It 
is likely that this ‘negative’ production near the wall occurs throughout the region 
100 ,< x - x o  ,< 153 cm, so that the level of is increased mostly by the advection 
and diffusion from regions of higher production. The redistribution of? which causes 
the rise in 2 and 3 is then directly attributable to the alteration of the pressure- 
velocity terms in the individual normal-stress equations (lO(u-c) of I) by the wall; 
note that these redistributive terms sum to zero by continuity, and so have no effect 
on the level of ?. In  I the behaviour of these terms was associated with the unexpected 
rise in 3 across the unbounded shear layer; it is remarkable that the expected 
redistribution of the normal stresses caused by the wall does not occur until after 
the mixing layer has made contact with the surface. 

The balance of the terms in the shear-stress equation (equation (1  1 )  of I) a t  152 cm 
is shown in figure 11.  The pressure-strain was found by difference. Since the general 
rise in is smaller than that in 2 and 3, the mean transport, the only term in the 
Wv-equation that contains a streamwise derivative, should be more accurate than the 
advection of turbulent energy. Thus the mean transport is likely to be only slightly 
in error near the wall, so that the negative pressure-strain for 7 5 -0.06 is a t  least 
qualitatively correct, as is the general decrease in the pressure-strain for 7 5 0 from 
that at 100 cm. Recall from I that the pressure-strain at 100 cm is greater than the 
self-preserving value for 7 2 -0.03, as the mean and turbulent transport did not 
increase sufficiently to absorb the extra generation caused by the rise in 2. At face 
value these non-monotonic changes would require the modifying functions appearing 
in current models for the effect of the wall on the pressure-strain (see $ 1 )  to be 
functions of x, as the turbulent lengthscale increases monotonically with x in 
the region 0 2 7 2 -0.05. 

in the m-equation, and 
in the turbulent-energy equation, is easier to measure and assess. It is most simply 
expressed as a reduction in magnitude of both transport velocities, Vqr and V, on 
the high-speed side, where they are directed towards the wall (figures 8 and 9). This 
reduction is related to the pressure fluctuations generated where the large eddies 

The effect of the wall on the triple-product terms, 
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FIGURE 11. Balance of shear-stress equation. 0, pressurestrain by difference. 
Dashed line is pressure-strain at 75.06 cm. 

'impact' on the wall: presumably the mean-strain contribution does not have a 
first-order influence on this aspect of wall effect. There is also some evidence from 
perturbed boundary layers (e.g. Smits et al. 1979; Andreopoulos & Wood 1982) that 
the triple products in other rapidly changing flows cannot be adequately represented 
by any local formula for the transport velocity. A similar conclusion holds also for 
the diffusivities of a and fi, defined as uv2/(i3uV/ay) and p"v/(a$/ay) respectively, 
which are more commonly used to model the triple products. Even though the 
diffusivities are well behaved in the wall-bounded flow, as 8 and a?/ay both go 
through zero together (see table l),  both diffusivities decrease monotonically from 
the self-preserving value for 7 5 -0.010. The decrease in each is by a factor of around 
2 (the results are not shown), while ?/c, commonly used as the timescale in the 
various models for the triple products (see e.g. Cormack, Leal & Seinfeld 1978), 
monotonically increases for 0 2 7 2 -0.05 between 50 and 152 cm. 

The general decrease in the ( T ' ,  0,O) correlation scales, which is associated with the 
small change in the dimensional peak spectral frequency between 75 and 152 em, 
indicates that the stretching of the large eddies in the plane of the wall is self- 
limiting. This in turn suggests that the original average large-eddy structure from the 
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self-preserving flow has retained its identity, if not its shape, because the only way 
that a correlation scale can continue to grow more rapidly than the shear-layer 
thickness is by significant amalgamation of adjacent large eddies. It appears that by 
152 cm the double-roller component is beginning to recover from being stretched and 
weakened by the initial effect of the wall at around 75 cm. 

5. Conclusions 
The measurements presented here complete the documentation of the response of 

a single-stream mixing layer to the imposition of a solid surface. The relative increase 
in the normal stresses in the plane ofthe wall occurs close to the wall in the wall-bounded 
flow, but only after there is a relative increase in v" across the whole unbounded shear 
layer. The spectra and the comparison of the measured normal stresses to typical 
values in zero-pressure-gradient boundary layers confirm that the near-wall amplifi- 
cation of 2 and 3 is due directly to the effect of the wall on the mixing-layer 
turbulence. The wall apparently alters the pressure field and hence the redistribution 
terms in the individual normal stress equations causing a transfer of energy to v" in 
the unbounded flow but transfer from v" in the wall-bounded flow. I n  contrast, the 
magnitudes of the transport velocities for turbulent energy and shear stress and the 
corresponding diffusivities generally decrease monotonically with x on the high- 
velocity side. However most models of the diffusivities involve ?/€, which increases 
with increasing x over most of the high-velocity side. 

The small shift in the dimensional frequency of the sharp spectral peak found a t  
both 75 and 152cm may be associated with some form of upstream feedback, 
although the approximate agreement between the dissipation found by difference and 
that inferred from the inertial-subrange equation suggests otherwise. The small 
change is more likely to be associated with some self-limiting of the size of the average 
large-eddy structure relative to the shear-layer thickness after the large increase that 
occurred by 75 cm. There is some evidence to suggest that the double-roller 
component of the large eddies is becoming more important by 152 cm after having 
been stretched and weakened by the initial influence of the wall. 

The results suggest that a calculation method sufficiently sophisticated to stimulate 
the change from a free shear layer to a wall-bounded one would have to include 
non-local formulae for the triple products. Furthermore the complex non-monotonic 
changes to the relative distribution of the turbulent energy among its three 
components indicates the need to provide equations for each normal stress, if for no 
other reason than that v" is the only normal stress that appears in the generation 
term for the shear stress. However the inclusion of the effect of the wall on the 
pressure-containing terms in the normal-stress equations and the m-equation is 
probably the most difficult requirement to achieve. 
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